Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1011200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341430

RESUMO

Background: This research aims to evaluate the feasibility of using avian immunoglobulins (IgY) raised against adhesion factors of enterotoxigenic Escherichia coli (ETEC) as prophylaxis of diarrheal illness caused by these pathogens. ETEC requires adhesion to human intestinal epithelial cells as a primary step in establishing enteric infection. Therefore, inhibition of adhesion may prevent such infections and reduce clinical burdens of diarrheal illness. Methods: IgY samples were prepared from eggs of hens immunized with an adhesin-tip multiepitope fusion antigen (MEFA), developed against nine adhesin tip epitopes derived from clinically relevant ETEC strains. The resulting IgY was evaluated for its ability to inhibit adhesion of ETEC to cell-surface targets. Potential impacts of anti-MEFA IgY on growth of both pathogenic and commensal E. coli isolates were also evaluated. Results: Enzyme linked immunosorbent assay (ELISA) titers were achieved for IgY targeting each of the nine individual epitopes included in the adhesin-tip MEFA. Furthermore, anti-MEFA titers exceeding 1:219 were sustained for at least 23 weeks. All ETEC strains used in design of the adhesin-tip MEFA, and five of five clinical ETEC strains were significantly (P < 0.05) inhibited from adhesion to mammalian cells in culture. Conclusions: These findings demonstrate that IgY targeting ETEC adhesin-tip MEFA have the potential to disrupt in vitro adherence of ETEC. A formulation containing adhesin-tip MEFA IgY can be considered a potential candidate for in vivo evaluation as prophylaxis of diarrheal diseases. Animal studies of this formulation are planned.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Feminino , Humanos , Galinhas , Estudos de Viabilidade , Antígenos de Bactérias , Infecções por Escherichia coli/prevenção & controle , Anticorpos Antibacterianos , Adesinas Bacterianas , Diarreia/prevenção & controle , Epitopos , Mamíferos
2.
Viruses ; 14(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36366469

RESUMO

BACKGROUND: Human norovirus (HuNoV) is the leading viral cause of diarrhea, with GII.4 as the predominant genotype of HuNoV outbreaks globally. However, new genogroup variants emerge periodically, complicating the development of anti-HuNoV vaccines; other prophylactic or therapeutic medications specifically for HuNoV disease are lacking. Passive immunization using oral anti-HuNoV antibodies may be a rational alternative. Here, we explore the feasibility of using avian immunoglobulins (IgY) for preventing HuNoV infection in vitro in a human intestinal enteroid (HIE) model. METHODS: Hens were immunized with virus-like particles (VLP) of a GII.4 HuNoV strain (GII.4/CHDC2094/1974/US) by intramuscular injection. The resulting IgY was evaluated for inhibition of binding to histo-blood group antigens (HBGA) and viral neutralization against representative GII.4 and GII.6 clinical isolates, using an HIE model. RESULTS: IgY titers were detected by three weeks following initial immunization, persisting at levels of 1:221 (1:2,097,152) from 9 weeks to 23 weeks. Anti-HuNoV IgY significantly (p < 0.05) blocked VLP adhesion to HBGA up to 1:12,048 dilution (0.005 mg/mL), and significantly (p < 0.05) inhibited replication of HuNoV GII.4[P16] Sydney 2012 in HIEs up to 1:128 dilution (0.08 mg/mL). Neutralization was not detected against genotype GII.6. CONCLUSIONS: We demonstrate the feasibility of IgY for preventing infection of HIE by HuNoV GII.4. Clinical preparations should cover multiple circulating HuNoV genotypes for comprehensive effects. Plans for animal studies are underway.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Caliciviridae , Norovirus , Humanos , Animais , Feminino , Galinhas , Estudos de Viabilidade , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/veterinária , Norovirus/genética , Antígenos de Grupos Sanguíneos/genética , Anticorpos
3.
PLoS One ; 16(5): e0252399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048457

RESUMO

BACKGROUND: The global pandemic of Coronavirus infectious disease 2019 (COVID-19), caused by SARS-CoV-2, has plunged the world into both social and economic disarray, with vaccines still emerging and a continued paucity of personal protective equipment; the pandemic has also highlighted the potential for rapid emergence of aggressive respiratory pathogens and the need for preparedness. Avian immunoglobulins (IgY) have been previously shown in animal models to protect against new infection and mitigate established infection when applied intranasally. We carried out a proof-of-concept study to address the feasibility of using such antibodies as mucosally-applied prophylaxis against SARS-CoV-2. METHODS: Hens were immunized with recombinant S1 spike glycoprotein of the virus, and the resulting IgY was evaluated for binding specificity, inhibition of glycoprotein binding to angiotensin converting enzyme-2 (ACE2) protein (the requisite binding site for the virus), and inhibition of viral replication in Vero cell culture. RESULTS: Titers of anti-S1 glycoprotein IgY were evident in yolks at 14 days post-immunization, peaking at 21 days, and at peak concentrations of 16.8 mg/ml. IgY showed strong and significant inhibition of S1/ACE2 binding interactions, and significantly inhibited viral replication at a concentration of 16.8 mg/ml. Four weeks' collection from eggs of two hens produced a total of 1.55 grams of IgY. CONCLUSIONS: In this proof-of-concept study we showed that avian immunoglobulins (IgY) raised against a key virulence factor of the SARS-CoV-2 virus successfully inhibited the critical initial adhesion of viral spike glycoproteins to human ACE2 protein receptors and inhibited viral replication in vitro, in a short period using only two laying hens. We conclude that production of large amounts of IgY inhibiting viral binding and replication of SARS-CoV-2 is feasible, and that incorporation of this or similar material into an intranasal spray and/or other mucosal protecting products may be effective at reducing infection and spread of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Proteínas Aviárias/imunologia , COVID-19/imunologia , Imunoglobulinas/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Ligação Viral , Replicação Viral/imunologia , Animais , Galinhas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...